

Professor David J Mellor Professor Kevin J Stafford Co-Directors

http://animalwelfare.massey.ac.nz

Animal Welfare Science Centre 1 March 2012

Broadening Our Perspectives on Negative and Positive Animal Welfare Impacts

Professor David J Mellor

D.J.Mellor@massey.ac.nz

Areas considered

- Introduction
- A focus on pain
- Giving more definition to distress
- Sources of *negative* experiences or affects: *motivational urges and drives*
- Positive subjective experiences or affects
- Concluding remarks

Areas considered

- Introduction
 - Source publications, animal welfare and lab-induced inpacts
- A focus on pain
- Giving more definition to distress
- Sources of *negative* experiences or affects: *motivational urges and drives*
- Positive subjective experiences or affects
- Concluding remarks

Introduction – source publications

- **Mellor, D.J.** (2011). Animal pain and World Organisation for Animal Health (OIE) guidelines. Session 5: Animal welfare. *In: Proceedings of the First OIE Global Conference on Evolving Veterinary Education for a Safer World*, Paris, France, 12-14 October, 2009, pp 175-180.
- **Green, T.C. & Mellor, D.J. (2011).** Extending ideas about animal welfare assessment to include 'quality of life' and related concepts. *New Zealand Veterinary Journal* 59, 263-271.
- **Mellor, D.J.** (2012). Animal emotions, behaviour and the promotion of positive welfare states. *New Zealand Veterinary Journal* 60, 1-8.
- **Mellor, D.J. (2012).** Affective states and the assessment of laboratory-induced animal welfare impacts. *Proceedings of the 8th World Congress on Alternatives and Animal Use in the Life Sciences*, Montreal, Canada, 21-25 August 2011: ALTEX (in press).
- **Beausoleil, N.J. & Mellor, D.J.** (2012). Complementary roles for systematic analytical evaluation and qualitative whole animal profiling in welfare assessment for Three Rs applications. *Proceedings of the 8th World Congress on Alternatives and Animal Use in the Life Sciences*, Montreal, Canada, 21-25 August 2011: ALTEX (in press).

Introduction – animal welfare

- AW is a state within an animal
- It is what the animal experiences
- It is the integrated outcome of:
 - Internally generated sensory inputs
 - Externally generated sensory inputs
 - Giving rise to subjective, emotional or affective states
 - Experienced consciously
- There has been a strong emphasis on *-ve states*
 - Thirst, hunger, pain, anxiety, fear, loneliness, boredom
- Increasingly +ve states are being emphasised

Introduction – lab-induced impacts

- The Three Rs focus on minimising -ve experiences
- Yet, in the past, the list was nonspecific and/or limited
- An expanded list would aid Three Rs applications
- Understanding sources of –ve experiences has increased the list which now would include *both*:
 - Undoubtedly negative experiences or affects
 - An absence of positive experiences or affects
- Increase in empathetic commitment to the Three Rs

Areas considered

- Introduction
- A focus on pain
- Giving more definition to distress
- Sources of *negative* experiences or affects: *motivational urges and drives*
- Positive subjective experiences or affects
- Concluding remarks

A focus on pain

- Early regulatory emphasis was on pain and distress
- A focus on pain was and is worthwhile
- Helps address many factors that compromise welfare
- This is because pain has:
 - Many causes injuries and disease-induced pathologies
 - Many manifestations acute, chronic, localised, generalised, physical, emotional, adaptive, maladaptive
 - More than one type may be present at the same time

Some Manifestations of pain

Aching	Burning	Beating
Throbbing	Shooting	Bursting
Boring	Sharp	Smarting
Drawing	Hot iron	Electricity
Pulling	Soreness	Stinging
Gripping	Knife-like	Pricking
Cramping	Stabbing	Needle-like
Nagging	Toothache	Tingling
Sense of pressure	Tearing	Itching
Gnawing	Hot cords	

Neville Gregory (2004). Physiology & Behaviour of Animal Suffering - Blackwell

A focus on pain

- Early regulatory emphasis on pain and distress
- The focus on pain was worthwhile
- Helps address many factors that compromise welfare
- This is because pain has:
 - Many causes injuries and disease-induced pathologies
 - Many manifestations acute, chronic, localised, generalised, physical, emotional, adaptive, maladaptive
 - More than one type may be present at the same time

Clearly a focus on pain and its alleviation has direct relevance to <u>refinement</u> in the laboratory context

Areas considered

- Introduction
- A focus on pain
- Giving more definition to distress
- Sources of *negative* experiences or affects: *motivational urges and drives*
- Positive subjective experiences or affects
- Concluding remarks

Giving more definition to distress

- 30 years ago distress served as a catch-all term for –ve experiences (other than pain) without specifying them
- An underestimation of –ve effects may have resulted
- Specification of particular types focuses attention for more effective refinement activity
- 1979 Five Freedoms noted: thirst, hunger, discomfort and fear, in addition to pain and distress
- Today, the list is much longer, and growing

For example: The Five Domains

PHYSICAL COMPONENTS

Giving more definition to distress

- This list remains open-ended by use of the phrase 'and other forms of distress'
- This expanded list has two advantages:
 - Being *explicit* it provides *guidance* about *possible targets* for refinements to mitigate -ve impacts in the lab and generally
 - Being open-ended, it highlights that additional forms of distress might be caused by our treatment of animals and should be evaluated as other possibilities for refinement or mitigation

Giving more definition to distress

- This list remains open-ended by use of the phrase 'and other forms of distress'
- This expanded list has two advantages:
 - Being explicit it provides guidance about possible targets for refinements to mitigate –ve impacts in the lab and generally
 - Being open-ended, it highlights that additional forms of distress might be caused by our treatment of animals and should be evaluated as other possibilities for refinement or mitigation

Specifying a wider range of -ve experiences requiring mitigation will enhance the overall effectiveness of refinement in laboratories and elsewhere

Areas considered

- Introduction
- A focus on pain
- Giving more definition to distress
- Sources of *negative* experiences or affects: *motivational urges and drives*
- Positive subjective experiences or affects
- Concluding remarks

- Health and survival depend on homeostatic mechanisms
- Their critical role is *interactions* between the *internal* and external environments of the body
- These interactions are active not passive

- Health and survival depend on homeostatic mechanisms
- Their critical role is *interactions* between the *internal* and external environments of the body
- These interactions are active not passive
- They are focused on basic functions: e.g.
 - Respiratory gas exchange
 - Fluid (water/electrolyte) balance
 - Nutrient supply and utilisation
 - Thermal equilibrium
 - Responses to injury

- These interactions involve *purposeful behaviours* at various levels of complexity
- These behaviours are essential for survival
- They involve various motivational urges and drives
- These urges and drives represent the *subjective* elements of these instinctual behavioural patterns

- These urges and drives include:
 - Hunger for air (breathlessness)
 - Thirst
 - Hunger for specific minerals (i.e. salt hunger)
 - Hunger for energy-dense food (i.e. general hunger)
 - Pain
 - Sensations accompanying visceral functions such as micturition or defecation
 - Desire for sleep after severe deprivation
 - Avoidance of change in body core temperature

- Fresh insights into the neurological foundations of these urges and drives:
 - Onset
 - Intensity
 - Directedness
 - Disappearance

Full details are available from:

Denton et al (2009). Consciousness and Cognition 18, 500-514

Here we are keeping it simple

- These urges and drives have two key characteristics:
 - A commanding specific <u>sensation</u>:
 - They often make only *mild intrusions* into consciousness
 - BUT, when strong, they can dominate consciousness
 - They are *subjectively distinct* we do not mix them up
 - A compelling specific <u>intention</u>:
 - Thirst generates a compelling intention to drink, NOT eat or defecate
 - Air hunger, due to suffocation, generates a compelling intention to fight for breath

A striking feature of each urge and drive

- Once the *motivated behaviour* achieves its *objective* there is a *precipitous decline* in both the *sensation* and the *intention*:
 - Air hunger is extinguished rapidly with a few deep breaths
 - Thirst with drinking of water
 - Salt hunger with ingestion of salt
 - General hunger with the speedy consumption of food
- Brain imaging studies show neural correlates with the changes in these urges or drives

Brain imaging studies:

- Intense activation in particular cortical regions:
 - When marked *air hunger is* at its height
 - When marked thirst is at its height
- Deactivation in these cortical regions accompanies:
 - Rapid extinction of air hunger with restoration of breathing
 - Rapid extinction of thirst with drinking to satiation
- The cortical activation and deactivation, respectively, are linked to the onset and rapid loss of conscious

 awareness of these urges and drives

A reminder:

• These *urges and drives* are derived from sensory 'scanning' of the *internal conditions* of the body

Animal welfare implication

• This pattern of *cortical activation/deactivation* supports the view that *minimisation of such urges and drives* (which are –ve mental states) merely moves the associated welfare state from –ve to neutral, NOT beyond neutral to +ve

Areas considered

- Introduction
- A focus on pain
- Giving more definition to distress
- Sources of *negative* experiences or affects: *motivational urges and drives*
- Positive subjective experiences or affects
- Concluding remarks

- Long proposed, now widely accepted that animals can also have +ve experiences
- Thus, it is likely that AW compromise may result from factors that *prevent* +*ve experiences*
- Promoting good AW thus requires BOTH the minimisation of –ve and the promotion of +ve experiences
- Such experiences are *subjective*, *emotional and/or* affective in character

- Positive experiences include: satiety, vitality, reward, contentment, curiosity and playfulness
- Absence of such affects may be a form of welfare compromise
- Their presence may thus constitute a *need* in the *mental* domain
- In these terms, good welfare results both from an absence of -ve states and the presence of +ve states

- Jaak Panksepp's neuropsychological thinking and research provide strong support for this view:
 - To date, it has not been imported into animal welfare science thinking to any great extent
 - In part because of the discursive character of his writing
 - High quality, a delight to read, but lengthy and hard work
 - In part because of its neurophysiological complexities
 - In part because he attributes intentionality and emotional contents to behaviour – ideas that are only now regaining credibility

- Thus, Panksepp's neuropsychological thinking and research are not well known in animal welfare circles:
 - Recently I have made an attempt to correct this omission –
 - Mellor DJ (2012). Animal emotions, behaviour and the promotion of positive welfare states. New Zealand Veterinary Journal 60, 1-8.

• Panksepp and colleagues have conceived of seven emotional action-orientated systems and outlined their cogent neuropsychological foundations:

```
    SEEKING +
    FEAR -
    RAGE-ASSERTIVENESS* -/+ (RAGE)
    BONDING* +/- (PANIC)
    CARE +
    PLAY +
    LUST +
```


- **SEEKING** system:
 - Its embedded emotional content includes
 - Compelling exploratory urges
 - Involving wanting and expectancy
 - Leading to engaged aliveness and excitement
 - Behaviourally expressed as goal-directed, energised exploration of or interaction with the environment
 - Neural circuits associated with +ve affect or reward

- FEAR system:
 - Generates -ve affects of -
 - Anxiety
 - A sense of threat
 - Fear
 - <u>Behaviourally</u> expressed as nervous vigilance, freezing or flight
 - Neural circuits for threat recognition and others for behavioural evasion of threat.

• RAGE-ASSERTIVENESS system (two elements):

1. RAGE

- Generates strongly –ve affects of
 - Anger, rage and highly aroused urges to defeat, dominate or defend
- Behaviourally expressed as species-typical offensive or defensive enraged attack behaviours
- Neural circuits for rage expression, threat recognition and some involvement of the FEAR circuits

- RAGE-ASSERTIVENESS system (two elements):
 - 2. ASSERTIVENESS
 - Generates +ve affects of energised, goal-directed wanting and expectancy driven by appetitive and consummatory urges
 - <u>Behaviourally</u> expressed as highly focused predatory stalking and attack, or focused and engaged foraging
 - Neural circuits involved are merged with those of the SEEKING system that engender a sense of reward

- BONDING system (two facets):
 - 1. Drive to experience +ve affects
 - Generates a strong drive to attain and retain the comfortable and comforting +ve affects of affectionate companionship or protection
 - Behaviourally expressed through initiation of and responsiveness to species-typical prosocial or affiliative interactions
 - <u>The circuits</u> involve neuroactive agents such as endogenous opioids, oxytocin, vasopressin and noradrenaline, as well as circuits for detecting thermotactile and odour cues.

- BONDING system (two facets):
 - 2. Drive to avoid –ve affects
 - Generates a strong drive to avoid separation-induced anxiety or panic, or isolation-induced loneliness
 - Behaviourally expressed through attempts to reunite with bonded others, or as depressive inactivity
 - <u>The circuits</u> involve neuroactive agents such as endogenous opioids, oxytocin, vasopressin and noradrenaline, as well as circuits for detecting thermotactile and odour cues.

CARE, PLAY and LUST systems:

Manifest +ve affects via:

- Protective and empathetic maternal care
- The *joyfulness* of play
- The appetitive eroticism and orgasmic pleasures of lust
- Behaviourally expressed in system-specific and species-typical ways
- Neural circuits involving specific neurochemicals and neuroactive hormones that generate these particular prosocial and affiliative emotions and behaviours.

• *Promotion* of +ve affective states:

To date, the primary rationale has been:

- Behaviour-based assessments of motivation to satisfy perceived needs, wants or preferences
- A key example is environmental enrichment initiatives
- Panksepp's concepts and their neuropsychological support may strongly reinforce the largely behavioural basis for most such initiatives taken to date.

• Replacement of –ve states with +ve states:

Manipulation of the FEAR system:

- Anxiety, fear and nervous vigilance may be <u>replaced</u> by calmness and harmonious interactions with other animals and human beings
- By minimising visual, auditory, olfactory, environmental,
 handling and other cues that may engender a sense of threat
- Otherwise fearful animals may thereby enjoy the enlivening rewards of exploratory and appetitive behaviour generated by the SEEKING system

- *Replacement* of –ve states with +ve states:
 - **Manipulation of the SEEKING system:**
 - Boredom may be <u>replaced</u> by the <u>enlivening rewards</u> of exploratory and appetitive behaviour
 - By improving the levels of environmental complexity and variety available for the animals

• *Replacement* of –ve states with +ve states:

Manipulation of the BONDING system:

- Loneliness, isolation, helplessness, separation distress and feelings of abandonment may be <u>replaced</u> with feelings of affectionate companionability and of being secure and protected
- By promoting affiliative interactions with compatible animals and minimising the separation of bonded animals

- Replacement of –ve states with +ve states:
 - **Manipulation of the CARE, PLAY and LUST systems:**
 - +ve prosocial and affiliative emotions could be <u>reinforced</u> if management practices were to be directed towards the CARE and PLAY systems and, probably limited to breeding animals, the LUST system

- *Replacement* of –ve states with +ve states:
 - **Manipulation of the RAGE-ASSERTIVENESS system:**
 - Frustration and anger may be minimised by the above initiatives
 - Also by continuing existing breeding and culling programmes that target temperament
 - As well as by keeping only mutually compatible animals together in groups

Areas considered

- Introduction
- A focus on pain
- Giving more definition to distress
- Sources of *negative* experiences or affects: *motivational urges and drives*
- Positive subjective experiences or affects
- Concluding remarks

- Targeting different types of <u>pain</u> caused by laboratory procedures and generally covers a wide range of potential –ve effects that merit direct attention.
- Defining different types of <u>distress</u> focused on specific additional –ve effects that also merit mitigation.
- Many of these relate to motivational *urges or drives* generated by the internal conditions of the body.
- BUT acceptable or good animal welfare is more than the mere absence of —ve subjective, emotional or affective states
- It also includes the *presence* (and promotion) of +ve states.

- Such +ve experiences may include feelings of satiety, vitality, reward, contentment, curiosity and playfulness.
- Panksepp's concepts extend understanding of the neuropsychological foundations of the intentionality and emotional contents of particular behaviours.
- They thereby also provide a *functional rationale*, reinforcing the *behavioural one*, for the *replacement* of –ve with +ve affective states.

- Finally, let us review the list of subjective, emotional or affective experiences we now need to consider when evaluating the potential impacts of laboratory procedures and other management approaches on animals:
 - Negative states, which our actions may cause, include:
 - Many types of pain, thirst, hunger, weakness, debility, breathlessness, nausea, sickness, anxiety, fear, nervous vigilance, boredom, loneliness, isolation, helplessness, frustration and anger, and other unspecified forms of distress
 - Positive states that our actions may compromise, include:
 - satiety, appetitive and consummatory satisfaction, reward, goaldirected engagement, curiosity, vitality, playfulness, calmness, contentment, affectionate companionability, and feelings of security

This much longer list might reasonably be *expected* to:

- Engender a more comprehensive awareness of <u>mitigation possibilities</u> and to enhance <u>caring and</u> <u>empathetic attitudes</u> towards animals
- Among RTT personnel, members of Animal Ethics Committees or Animal Care and Use Committees, farmers, veterinarian and others.

Thank you

Q & A

